Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861337

RESUMO

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Fator 1 de Elongação de Peptídeos , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Peixes , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Peixes/metabolismo , Doenças dos Peixes/metabolismo
2.
Pathogens ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242400

RESUMO

Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish (Siniperca chuatsi) and largemouth bass (Micropterus salmoides). The two ranaviruses both induced cytopathic effects in cultured cells from fish and amphibians and have the typical morphologic characteristics of ranaviruses. Complete genomes of the two ranaviruses were then sequenced and analyzed. Genomes of SCRaV and MSRaV have a length of 99, 405, and 99, 171 bp, respectively, and both contain 105 predicted open reading frames (ORFs). Eleven of the predicted proteins have differences between SCRaV and MSRaV, in which only one (79L) possessed a relatively large difference. A comparison of the sequenced six ranaviruses from the two fish species worldwide revealed that sequence identities of the six proteins (11R, 19R, 34L, 68L, 77L, and 103R) were related to the place where the virus was isolated. However, there were obvious differences in protein sequence identities between the two viruses and iridoviruses from other hosts, with more than half lower than 55%. Especially, 12 proteins of the two isolates had no homologs in viruses from other hosts. Phylogenetic analysis revealed that ranaviruses from the two fishes clustered in one clade. Further genome alignment showed five groups of genome arrangements of ranaviruses based on the locally collinear blocks, in which the ranaviruses, including SCRaV and MSRaV, constitute the fifth group. These results provide new information on the ranaviruses infecting fishes of Perciformes and also are useful for further research of functional genomics of the type of ranaviruses.

3.
J Fish Dis ; 45(10): 1439-1449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35762824

RESUMO

Chinese perch (Siniperca chuatsi), an important fish for the aquaculture industry of China, is often affected by viral diseases. A stable and sensitive cell line can play an important role in virus identification and isolation, functional gene identification, virus pathogenic mechanism and antiviral immunity study. In the present study, a new cell line (S. chuatsi skin cell, SCSC) derived from the skin of S. chuatsi was established. The SCSC mainly consisted of fibroblastic-like cells, which grew well in M199 medium supplemented with 10% foetal bovine serum at 25°C. Chromosome analysis revealed that the SCSC (44%) has a diploid chromosome number of 2n = 48. The SCSC can be transfected and expressed exogenous gene efficiently. It also showed high sensitivity to several aquatic animal viruses from different families including Rhabdoviridae, Iridoviridae and Reoviridae. In addition, RT-PCR showed that S. chuatsi rhabdovirus (SCRV) started genome replication as early as 3 h post infection in the cells, which also induced the up-regulation of a variety of immune-related genes including these related to interleukin family, pattern recognition receptors, JAK-STAT pathway and interferon regulatory factors. In summary, current study provided a new tool in research of fish viruses and its interaction with host.


Assuntos
Doenças dos Peixes , Iridoviridae , Percas , Rhabdoviridae , Animais , Linhagem Celular , Iridoviridae/fisiologia , Janus Quinases , Rhabdoviridae/fisiologia , Fatores de Transcrição STAT , Transdução de Sinais
4.
Cell Biosci ; 12(1): 6, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991685

RESUMO

BACKGROUND: Ranaviruses (family Iridoviridae) are promiscuous pathogens that can infect across species barriers in poikilotherms and can replicate in amphibian and fish cells and even in cultured mammalian cells. However, as nucleocytoplasmic large DNA viruses (NCLDVs), their replication and transcription mechanisms remain largely unknown. Here, we screened and uncovered the replication and transcription machinery of two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), by a combination of methods, including the isolation of proteins on nascent DNA, recombinant virus-based affinity, and NanoLuc complementation assay. RESULTS: The ranavirus replication and transcription machinery was deeply dissected and identified as a complicated apparatus containing at least 30 viral and 6 host proteins. The viral proteins ADRV-47L/RGV-63R (DNA polymerase, vDPOL), ADRV-23L/RGV-91R (proliferating cell nuclear antigen, vPCNA), ADRV-85L/RGV-27R (single-stranded DNA binding protein, vSSB), ADRV-88L/RGV-24R (vhelicase/primase), etc., constitute the core replisome. Specifically, the core of the transcription complex, the viral RNA polymerase, contain the host RNAPII subunits Rpb3, Rpb6, and Rpb11, which was a first report in NCLDVs. Furthermore, correlations and interactions among these factors in the machinery were described. Significantly, the replisome core protein vDPOL (ADRV-47L) can interact with numerous viral and host proteins and could act as a linker and regulation center in viral DNA replication and transcription. Thus, these results depicted an architecture for ranavirus replication and transcription. CONCLUSIONS: Up to 36 components from ranavirus and their host were found to form viral replisomes and transcription complexes using a series of precise methods, which further constructed an architecture for ranavirus replication and transcription in which vDPOL was a key central factor and various components correlated and cooperated. Therefore, it provides a cornerstone for further understanding the mechanisms of the replication and transcription of ranaviruses which can ensure the efficient production of progeny virus and adaptation to cross-species infection.

6.
J Virol ; 87(24): 13694-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109223

RESUMO

The development of a safe and efficient dengue vaccine represents a global challenge in public health. Chimeric dengue viruses (DENV) based on an attenuated flavivirus have been well developed as vaccine candidates by using reverse genetics. In this study, based on the full-length infectious cDNA clone of the well-known Japanese encephalitis virus live vaccine strain SA14-14-2 as a backbone, a novel chimeric dengue virus (named ChinDENV) was rationally designed and constructed by replacement with the premembrane and envelope genes of dengue 2 virus. The recovered chimeric virus showed growth and plaque properties similar to those of the parental DENV in mammalian and mosquito cells. ChinDENV was highly attenuated in mice, and no viremia was induced in rhesus monkeys upon subcutaneous inoculation. ChinDENV retained its genetic stability and attenuation phenotype after serial 15 passages in cultured cells. A single immunization with various doses of ChinDENV elicited strong neutralizing antibodies in a dose-dependent manner. When vaccinated monkeys were challenged with wild-type DENV, all animals except one that received the lower dose were protected against the development of viremia. Furthermore, immunization with ChinDENV conferred efficient cross protection against lethal JEV challenge in mice in association with robust cellular immunity induced by the replicating nonstructural proteins. Taken together, the results of this preclinical study well demonstrate the great potential of ChinDENV for further development as a dengue vaccine candidate, and this kind of chimeric flavivirus based on JE vaccine virus represents a powerful tool to deliver foreign antigens.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vírus da Encefalite Japonesa (Espécie)/imunologia , Animais , Anticorpos Antivirais/imunologia , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Feminino , Humanos , Imunização , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
8.
Virol J ; 10: 64, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442449

RESUMO

BACKGROUND: Viral self-replicating sub-genomic replicons represent a powerful tool for studying viral genome replication, antiviral screening and chimeric vaccine development. Many kinds of flavivirus replicons have been developed with broad applications. FINDINGS: The replicon system of JEV live vaccine strain SA14-14-2 was successfully developed in this study. Two kinds of replicons that express enhanced green fluorescent protein (EGFP) and Renilla luciferase (R.luc) were constructed under the control of SP6 promoter, respectively. Robust EGFP and R.luc signals could be detected in the replicon-transfected BHK-21 cells. Furthermore, the potential effects of selected amino acids in the C-terminal of envelope protein on replication were characterized using the replicon system. CONCLUSIONS: Our results provide a useful platform not only for the study of JEV replication, but also for antiviral screening and chimeric vaccine development.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Vacinas contra Encefalite Japonesa/genética , Replicon , Animais , Linhagem Celular , Clonagem Molecular , Cricetinae , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Humanos , Vacinas contra Encefalite Japonesa/imunologia
9.
J Virol ; 86(24): 13808-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23166230

RESUMO

Here we report the complete genome sequence of a dengue virus serotype 2 (DENV-2) strain, GZ40, isolated in Guangdong, China, in 2010. A phylogenetic analysis classified GZ40 into the Cosmopolitan genotype, while previous Chinese DENV-2 isolates belong to the Asian I genotype. The reemergence of the Cosmopolitan genotype of DENV-2 in China deserves further investigation.


Assuntos
Vírus da Dengue/genética , Genoma Viral , China , Vírus da Dengue/classificação , Dados de Sequência Molecular
10.
Arch Virol ; 157(12): 2273-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22865206

RESUMO

A new duck Tembusu virus (TMUV), also known as BYD virus, has been identified as the causative agent for the emerging duck egg-drop syndrome in mainland China. The rapid spread and wide distribution of the new TMUV in mainland China result in heavy loss to the poultry industry and pose great threats to public health. Rapid and sensitive detection methods are critical for prevention and control of TMUV infections. In this study, a reverse-transcription loop-mediated isothermal amplification assay (RT-LAMP) and an SYBR Green-I-based real-time RT-PCR assay specific for the duck TMUV were developed and validated with laboratory and field samples, respectively. The detection limits were 1 × 10(-4) and 1 × 10(-3) PFU per reaction for the RT-LAMP assay and real-time RT-PCR assay, respectively. The specificities were analyzed with other related members of the genus Flavivirus, and no cross-reaction was observed. Furthermore, both assays were evaluated with field samples, and they exhibited high sensitivity and specificity. In addition, the real-time RT-PCR assay worked well in viral load analysis, which revealed that the spleen may be the primary target for the replication of new duck TMUV in ducks. The TMUV-specific RT-LAMP and real-time RT-PCR assays will provide useful tools for the diagnosis and epidemiological surveillance of TMUV infection.


Assuntos
Patos , Infecções por Flavivirus/veterinária , Flavivirus/isolamento & purificação , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Encéfalo/virologia , China/epidemiologia , Flavivirus/genética , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Fígado/virologia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/epidemiologia , Sensibilidade e Especificidade , Síndrome , Carga Viral
11.
J Virol ; 86(16): 8904-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22843862

RESUMO

Chikungunya virus belongs to the genus Alphavirus in the family Togaviridae. Here we report the complete genome sequence of a chikungunya virus strain, GD05/2010, isolated in 2010 from a patient with chikungunya fever in Guangdong, China. The sequence information is important for surveillance of this emerging arboviral infection in China.


Assuntos
Vírus Chikungunya/genética , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , Infecções por Alphavirus/virologia , Febre de Chikungunya , Vírus Chikungunya/isolamento & purificação , China , Humanos , Dados de Sequência Molecular
12.
Virol J ; 9: 125, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22721418

RESUMO

Dengue is emerging as the most important mosquito borne viral disease in the world. In mainland China, sporadic and large outbreaks of dengue illness caused by the four serotypes of dengue virus (DENV-1 to DENV-4) have been well documented. Guangdong province is the major affected area in China, and DENV-1 has dominantly circulated in Guangdong for a long time. In this study, a family cluster of DENV-3 infection in Guangzhou was described. Three cases were diagnosed as dengue fever based on clinical manifestation, serological and RT-PCR assays. Two DENV-3 strains were isolated in C6/36 cells and the complete genome sequences were determined. Phylogenetic analysis revealed that the new DENV-3 isolates from the family cluster were grouped within genotype III. Considering the fact that several DENV-3 strains within genotype V were also identified in Guangzhou in 2009, at least two genotypes of DENV-3 co-circulated in Guangzhou. Careful investigation and virological analysis should be warranted in the future.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/genética , Dengue/epidemiologia , Dengue/virologia , Adulto , Anticorpos Antivirais/sangue , China/epidemiologia , Análise por Conglomerados , Dengue/patologia , Vírus da Dengue/isolamento & purificação , Saúde da Família , Feminino , Genoma Viral , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
13.
J Virol ; 86(12): 7021-2, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22628403

RESUMO

Here we report the first complete genome sequence of a dengue virus serotype 4 genotype II strain, GZ30, isolated in Guangzhou, Guangdong Province, China, in 2010. The sequence information provided herein will help us to understand the molecular epidemiology of dengue virus and predict the risk of severe diseases in mainland China.


Assuntos
Vírus da Dengue/genética , Dengue/virologia , Genoma Viral , Sequência de Bases , China , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia
14.
J Virol Methods ; 178(1-2): 87-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21893098

RESUMO

While self-replicating, non-infectious subgenomic flavivirus replicons have been described, most of them are RNA transcripts under the control of an Sp6 or T7 promoter. In this study, using West Nile virus (WNV) as a model, a series of DNA-based reporter replicons under the control of a minimal cytomegalovirus (CMV) immediate-early promoter were constructed, and functional analysis showed that these reporter replicons replicate efficiently in mammalian cells. When the DNA-based WNV replicon was used to immunize mice, NS1-specific IgG antibodies and anti-WNV neutralizing antibodies were both induced. Additionally, immunization with this DNA-based WNV replicon induced high levels of lymphocyte proliferation and enhanced the secretion of IFN-γ. These results suggest that this type of DNA-based replicon can induce humoral and cellular immune responses in mice, indicating that this type of DNA-based replicon may serve as a useful platform for vaccine development and protein expression.


Assuntos
Anticorpos Antivirais/sangue , Linfócitos/imunologia , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Neutralizantes/sangue , Proliferação de Células , Feminino , Imunoglobulina G/sangue , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas contra o Vírus do Nilo Ocidental/administração & dosagem , Vacinas contra o Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/crescimento & desenvolvimento
15.
Immunol Lett ; 138(2): 156-60, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21515306

RESUMO

Japanese encephalitis virus (JEV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that cause severe encephalitic diseases with global impact. Cross protection among JEV and WNV has been previously described, and most cross reactive epitopes were identified within the domain II of E protein (EDII). In this study, the E protein domain III (EDIII) of JEV was successfully expressed in Escherichia coli, purified by a Ni-NTA column and characterized by Western blotting assay. Competitive inhibition assay showed that this recombinant JEV EDIII blocks the entry of JEV into BHK-21 cells. Mice immunized with the recombinant JEV EDIII developed high IgG and neutralizing antibodies titers against JEV. Most importantly, antibodies induced by JEV EDIII could neutralize WNV in vitro and partially protected mice against lethal WNV challenge. These results demonstrate that immunization with JEV EDIII induces cross-protective immunity against WNV infection, indicating a possible role of EDIII for the cross-protection among flavivirus.


Assuntos
Proteção Cruzada/imunologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/imunologia , Imunização , Imunoglobulina E , Internalização do Vírus/efeitos dos fármacos , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Ligação Competitiva , Western Blotting , Linhagem Celular , Cromatografia de Afinidade , Clonagem Molecular , Cricetinae , Reações Cruzadas , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Escherichia coli , Feminino , Imunoglobulina E/química , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transfecção , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/virologia
16.
Infect Control Hosp Epidemiol ; 31(9): 961-3, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20636129

RESUMO

Prophylaxis and treatment with oseltamivir effectively controlled a community outbreak of pandemic influenza A (H1N1) in China. The genetic makeup of strains of different generations seemed to be stable. Travel in confined settings might accelerate the transmission of pandemic influenza in a community outbreak.


Assuntos
Surtos de Doenças/prevenção & controle , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/transmissão , Vigilância da População , Adulto , Antivirais/uso terapêutico , Sequência de Bases , China/epidemiologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Oseltamivir/uso terapêutico , Fatores de Tempo
17.
J Gen Virol ; 91(Pt 5): 1218-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20016034

RESUMO

RNA elements within the flavivirus genome may play essential regulatory roles during virus replication. Here, recombinant West Nile virus (WNV) NS5 protein was used in combination with WNV subgenomic RNA templates to establish in vitro RNA-dependent RNA polymerase and RNA-binding assays. These assays identified mutations in the stem-loop A (SLA) region of the 5' untranslated region (5'UTR) altering NS5 RNA synthesis and RNA-binding capability. These mutations were then introduced into the full-length WNV genome by reverse genetics. Further analysis of the mutant viruses showed that deletion of nt 46-60, which disrupted the stem and side loop of SLA, greatly compromised virus replication, whereas mutations that destroyed the top loop of SLA required for RNA synthesis in vitro did not significantly alter virus replication. These results suggest that SLA present in the 5'UTR of WNV is essential for RNA synthesis in vitro and for virus replication.


Assuntos
Regiões 5' não Traduzidas , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Vírus do Nilo Ocidental/fisiologia , Animais , Chlorocebus aethiops , Conformação de Ácido Nucleico , Ligação Proteica , Deleção de Sequência , Células Vero , Ensaio de Placa Viral , Vírus do Nilo Ocidental/genética
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 27(1): 31-4, 37, 2007 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-17259139

RESUMO

OBJECTIVE: To generate rescued viruses with deletion mutation of capsid protein from dengue virus type 2 isolated in China (DEN2-43). METHODS: On the basis of infectious full-length cDNA clone pD212 of DEN2-43 strain virus, the deletion mutants were constructed by fusion PCR, from which the rescued viruses with deletion mutation of capsid protein were generated by transcription in vitro and electroporation. RESULT AND CONCLUSION: Sequence analysis demonstrated that the deletion mutations had been successfully inserted into the rescued viruses obtained. These mutant viruses may hold the key for elucidating the effects of deletion mutation of capsid protein on the biological characteristics of dengue virus.


Assuntos
Proteínas do Capsídeo/genética , Vírus da Dengue/genética , Deleção de Sequência , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Análise Mutacional de DNA , Vírus da Dengue/isolamento & purificação , Eletroporação , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...